Fifth Annual Conference on Carbon Capture & Sequestration

Steps Toward Deployment

Geologic – Monitoring, Mitigation, and Verification

A Statistical Algorithm to Detect and Quantify CO₂ Leakage for the Verification of Geologic Carbon Sequestration

Jennifer L. Lewicki, George E. Hilley, and Curtis M. Oldenburg

May 8-11, 2006 • Hilton Alexandria Mark Center • Alexandria, Virginia

A Statistical Algorithm to Detect and Quantify Near-Surface CO₂ Leakage for Verification of Geologic Carbon Sequestration

Jennifer L. Lewicki¹, George E. Hilley², Curtis M. Oldenburg¹

¹Earth Sciences Division, LBNL

²Department of Geological and Environmental Sciences, Stanford University

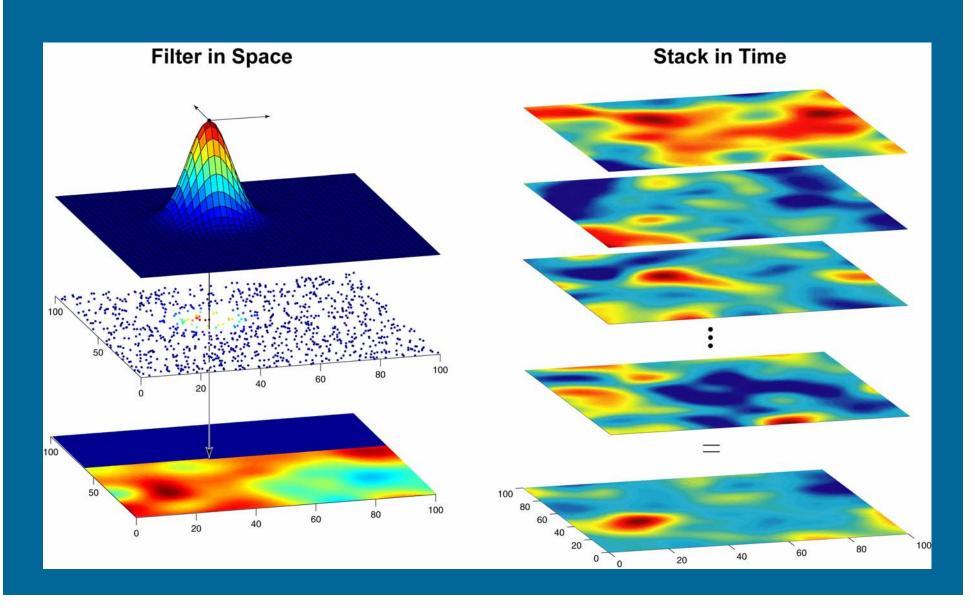
Motivation

- Monitoring of CO₂ storage sites must be carried out to verify that CO₂ is not leaking
- Meet challenge of detecting subtle leakage signals within background variability by...

Strategy

 Integrating near-surface measurements of CO₂ fluxes or concentrations with statistical algorithm that enhances properties of the data that are associated with leakage, while reducing random background contributions

Background vs. Leakage Signals: Differences


- High spatial heterogeneity of biological production
- Production
 correlated on
 predictable
 timescales

- Leakage (along well bore or fault) relatively coherent in space
- Leakage relatively constant

Background vs. Leakage Signals: Similarities

- Near-surface CO₂ fluxes/concentrations from both sources modified on predictable timescales
- These temporal variations can be removed from spatial flux/concentration datasets
- Areas of elevated spatial and temporal correlation in CO₂ associated with leakage can then be made more obvious

Filtering and Stacking Method

Surface CO₂ Flux Leakage Signals

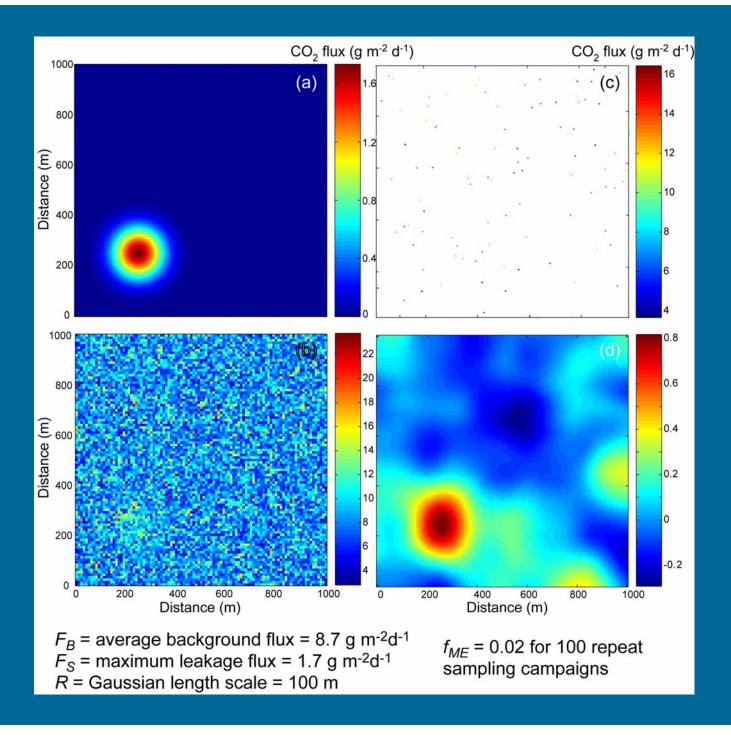
- Two-dimensional scaled Gaussian distribution
- Modeled surface CO₂ fluxes associated with CO₂ leakage from well bore (point) and fault (line) sources using TOUGH2/T2CA

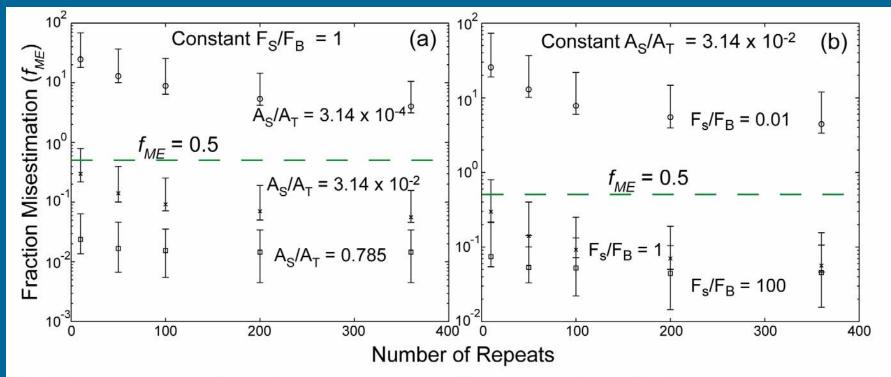
Background Surface CO₂ Fluxes

- Background biological noise added to leakage signal and surrounding area (10⁶ m²)
- Accumulation chamber method in grassland, central CA
- n = 287, 5-m spacing grid, uncorrelated on this scale
- Diurnal fluctuations removed, μ = 8.7 g m⁻²d⁻¹ = F_B

Sampling and Processing Strategies

- Grid and random sampling strategies investigated
- In all cases, 100 fluxes sampled from the underlying synthetic data set during each repeat sampling campaign, Gaussian filtering applied to each of the repeat data sets, and fluxes temporally averaged at each interpolated grid point


Strategy Success


$$f_{ME} = \sqrt{(LR_I - LR_C)^2} / LR_I$$

 LR_I = Imposed leakage rate LR_C = Calculated leakage rate

Leakage rate = spatially integrated flux of synthetic source

 f_{ME} </= 0.5: "detectable" leakage signal f_{ME} > 0.5: "undetectable"

R = Gaussian length scale L = model domain length = 1000 m R/L = 0.01, 0.1, 0.5

 A_S = area of synthetic source A_T = area of model domain = 10⁶ m² F_S = maximum leakage flux F_B = average background flux = 8.7 g m⁻² d⁻¹

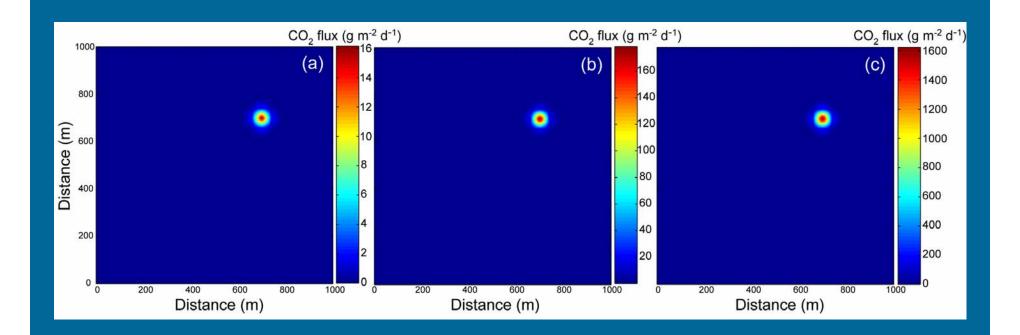
 $f_{ME} = \sqrt{(LR_I - LR_C)^2} / LR_I$

Conclusions

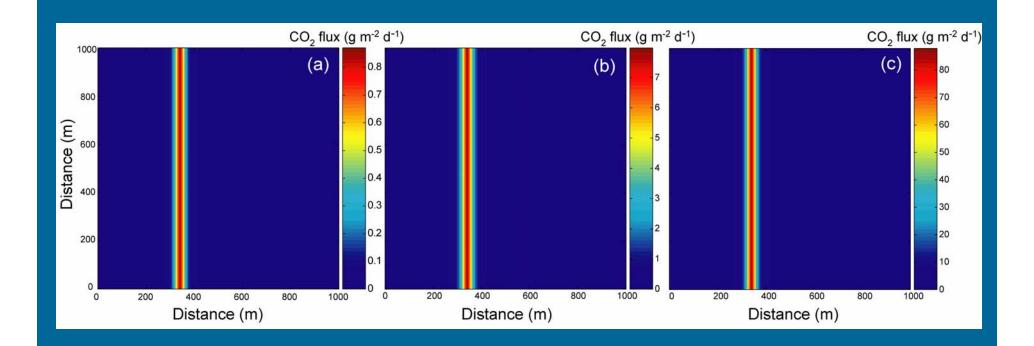
- Importance of maximizing A_S/A_T when F_S within the background variability of CO_2 flux or when A_S is small (e.g., wells, mostly sealed faults/fractures)
- Method applies to other gas species and concentrations
- 10 to 50 repeat sampling campaigns (100 samples each) reasonable within a year

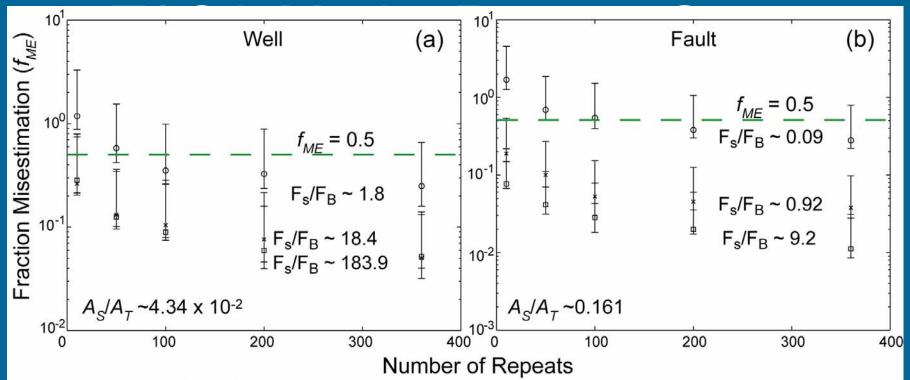
Conclusions

- Assumptions of method
 - fluxes are statistically uniform over study area
 - leakage slowly evolving over period of observation
- Strategy provides means to locate and quantify potentially small CO₂ leakage signals within the natural background variability of CO₂


Acknowledgements

This work was supported in part by a Cooperative Research and Development Agreement between BP Corporation North America, as part of the CO₂ Capture Project, and the U.S. Department of Energy through the National Energy Technologies Laboratory, and by the Ernest Lawrence Berkeley National Laboratory, managed for the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.


Vadose Zone Model


- Subsurface: 1000 m x 1000 m x 28 m, $k = 1 \times 10^{-12} \text{ m}^2$, n = 0.2, $T = 15^{\circ}\text{C}$
- Well source geometry: 1 x 1 m, -27.1 m depth. Source leakage fluxes: 3.8 x 10⁴, 3.8 x 10⁵, 3.8 x 10⁶ g m⁻²d⁻¹
- Fault source geometry: 10 x 1000 m, 27.1 m depth. Source leakage fluxes: 3.8, 38, 380 g m⁻²d⁻¹

Surface CO₂ Leakage Fluxes: Well Simulations

Surface CO₂ Leakage Fluxes: Fault Simulations

 A_S = area of synthetic source

 $A_T = a$ rea of model domain = 10⁶ m²

 F_S = maximum leakage flux

 F_B = average background flux = 8.7 g m⁻² d⁻¹

 $f_{ME} = \sqrt{(LR_I - LR_C)^2} / LR_I$